Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732767

RESUMO

Conduits are plastic tubes extensively used to safeguard electrical cables, traditionally made from PVC. Recent safety guidelines seek alternatives due to PVC's emission of thick smoke and toxic gases upon fire incidents. Polypropylene (PP) is emerging as a viable alternative but requires modification with suitable halogen-free additives to attain flame retardancy (FR) while maintaining high mechanical strength and weathering resistance, especially for outdoor applications. The objective of this study was to develop two FR systems for PP: one comprising a cyclic phosphonate ester and a monomeric N-alkoxy hindered amine adjuvant achieving V0, and another with hypophosphite and bromine moieties, along with a NOR-HAS adjuvant achieving V2. FR performance along with mechanical properties, physicochemical characterization, and dielectric behavior were evaluated prior to and after 2000 h of UV weathering or heat ageing. The developed FR systems set the basis for the production of industrial-scale masterbatches, from which further optimization to minimize FR content was performed via melt mixing with PP towards industrialization of a low-cost FR formulation. Accordingly, two types of corrugated conduits (ø20 mm) were manufactured. Their performance in terms of flame propagation, impact resistance, smoke density, and accelerated UV weathering stability classified them as Halogen Free Low Smoke (HFLS) conduits; meanwhile, they meet EU conduit standards without significantly impacting conduit properties or industrial processing efficiency.

2.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540743

RESUMO

Laccase from Trametes versicolor was applied to produce phenolic polymeric compounds with enhanced properties, using a wine lees extract as the phenolic source. The influence of the incubation time on the progress of the enzymatic oxidation and the yield of the formed polymers was examined. The polymerization process and the properties of the polymeric products were evaluated with a variety of techniques, such as high-pressure liquid chromatography (HPLC) and gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The enzymatic polymerization reaction resulted in an 82% reduction in the free phenolic compounds of the extract. The polymeric product recovery (up to 25.7%) and the molecular weight of the polymer depended on the incubation time of the reaction. The produced phenolic polymers exhibited high antioxidant activity, depending on the enzymatic oxidation reaction time, with the phenolic polymer formed after one hour of enzymatic reaction exhibiting the highest antioxidant activity (133.75 and 164.77 µg TE mg-1 polymer) towards the ABTS and DPPH free radicals, respectively. The higher thermal stability of the polymeric products compared to the wine lees phenolic extract was confirmed with TGA and DSC analyses. Finally, the formed phenolic polymeric products were incorporated into chitosan films, providing them with increased antioxidant activity without affecting the films' cohesion.


Assuntos
Antioxidantes , Vinho , Antioxidantes/química , Lacase/química , Vinho/análise , Polímeros/química , Trametes , Embalagem de Alimentos , Fenóis/química , Extratos Vegetais/análise
3.
J Hazard Mater ; 455: 131574, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150100

RESUMO

Plastic pollution remains a significant environmental challenge, with conventional waste management strategies proving insufficient in addressing the problem. Enzymatic degradation has emerged as a promising alternative, with LCCICCG, an engineered metagenome-derived cutinase, being the most effective in degrading polyethylene terephthalate (PET), the most commonly produced and discarded polyester. However, more efficient PET-hydrolases are needed for the upscaling of a PET-waste biorefinery. In this regard, the study reports the characterization of a novel, phylogenetically distinct, thermophilic polyesterase from Deinococcus maricopensis (DmPETase) and its comparison to LCCICCG. DmPETase is capable of degrading various synthetic polymers, including PET, polyurethane, as well as four semi-crystalline aliphatic polyesters. DmPETase was found to be comparable to LCCICCG at 50 °C in degrading semi-crystalline sections of post-consumer PET bottles, but it appeared to be less sensitive to crystallinity degree increase. This property makes DmPETase a new template for protein engineering endeavors to create an efficient biocatalyst to be integrated into the bio-recycling process of PET waste, without the need for amorphization of the materials.


Assuntos
Benchmarking , Poluição Ambiental , Plásticos , Polietilenotereftalatos , Hidrolases/metabolismo , Polietilenotereftalatos/química
4.
Environ Pollut ; 325: 121460, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940913

RESUMO

The uncontrollable disposal of plastic waste has raised the concern of the scientific community, which tries to face this environmental burden by discovering and applying new techniques. Regarding the biotechnology field, several important microorganisms possessing the necessary enzymatic arsenal to utilize recalcitrant synthetic polymers as an energy source have been discovered. In the present study, we screened various fungi for their ability to degrade intact polymers, such as ether-based polyurethane (PU) and low-density polyethylene (LDPE). For this, ImpranIil® DLN-SD and a mixture of long-chain alkanes were used as sole carbon sources, indicating not only the most promising strains in agar plate screening but also inducing the secretion of depolymerizing enzymatic activities, useful for polymer degradation. The agar plate screening revealed three fungal strains belonging to Fusarium and Aspergillus genera, whose secretome was further studied for its ability to degrade the aforementioned non-treated polymers. Specifically for ether-based PU, the secretome of a Fusarium species reduced the sample mass and the average molecular weight of the polymer by 24.5 and 20.4%, respectively, while the secretome of an Aspergillus species caused changes in the molecular structure of LDPE, as evidenced by FTIR. The proteomics analysis revealed that the enzymatic activities induced in presence of Impranil® DLN-SD can be associated with urethane bond cleavage, a fact which was also supported by the observed degradation of the ether-based PU. Although, the mechanism of LDPE degradation was not completely elucidated, the presence of oxidative enzymes could be the main factor contributing to polymer modification.


Assuntos
Polietileno , Poliuretanos , Poliuretanos/química , Polietileno/química , Ágar/metabolismo , Secretoma , Plásticos/metabolismo , Fungos/metabolismo , Aspergillus/metabolismo , Éteres/metabolismo , Biodegradação Ambiental
5.
Chemosphere ; 312(Pt 1): 137338, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423718

RESUMO

White-rot basidiomycetes are the only microorganisms able to produce both hydrolytic (cellulases and hemicellulases) and oxidative (ligninolytic) enzymes for degrading all lignocellulose constituents. Their enzymatic machinery makes them ideal for the discovery of novel enzymes with desirable properties. In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic potential. Secretomics and biochemical analyses were employed to study the strain's enzymatic arsenal, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of biomass, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant with ion-exchange chromatography. Characterization of purified laccases revealed their ability to oxidize a wide variety of phenolic and non-phenolic substrates. AbiLac1 was found to oxidize polystyrene powder, showing high depolymerization potential, based on radical chain scission mechanism as evidenced by molecular weight decrease. The results of the present study demonstrate the biotechnological potential of the unexplored enzymatic machinery of white-rot basidiomycetes, including the design of improved lignocellulolytic cocktails, as well as the degradation and/or valorization of plastic waste materials.


Assuntos
Basidiomycota , Polyporales , Lacase/metabolismo , Poliestirenos/metabolismo , Polyporales/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo
6.
J Biomed Nanotechnol ; 18(3): 729-739, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715912

RESUMO

To date, the possibility of drug-resistant bacterial infections in hospitals and intensive care units comprises a significant concern especially for immunocompromised cancer patients. In the current study, violacein and superparamagnetic iron oxide nanoparticles were co-encapsulated in polylactic acid nanoparticles (vio-Fe3O4-PLA) and tested for their antimicrobial and anticancer activity. The loaded nanoparticles presented efficient saturation magnetization that rendered this nanosystem a promising candidate for magnetic targeting. Moreover, violacein released from the nanoparticles at 500 µg/mL successfully inhibited the growth of the "superbug" methicillin-resistant Staphylococcus aureus (MRSA) with an IC50 value of 595.8 µg/mL, while it did not prove effective against multi-drug-resistant Escherichia coli at concentrations of 10-1000 µg/mL. Finally, a concentration of 500 µg/mL of drug loaded magnetic nanoparticles induced an over 80% growth inhibition of glioblastoma and melanoma cancer cell lines with IC50 values of 221.30 and 201.60 µg/mL, respectively. Since bacterial infections are a key clinical problem for cancer patients due to their compromised immune systems, the presented results suggest that our system should be further studied for its simultaneous anti-bacterial and anti-cancer properties, as it comprises a promising strategy for combating bacterial infections and providing anticancer activity through magnetic-targeted delivery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Compostos Férricos , Humanos , Indóis , Testes de Sensibilidade Microbiana , Poliésteres/farmacologia
7.
Data Brief ; 43: 108374, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761989

RESUMO

Silica-organic matrix-silver, nano-catalysts, were synthesized employing four different hyperbranched poly(ethylene imines) (MW 2000 to 750,000) to reduce Ag+ to metal nanoparticles and the formation of formation SiO2 shells. The latter is performed at pH 7,5 employing three different pH regulating agents Hepes, Trizma, and Phosphate Salts. Characterization of the resulting materials with spectroscopy (FTIR), thermogravimetry (TG), scanning electron microscopy (SEM), and ζ-potential is reported. Kinetic studies of standard reactions, 4-nitrophenol and 4-nitroaniline reduction to 4-aminophenol and p-phenylenediamine, respectively by UV-Visible spectroscopy are also included. This data in brief article is related to the "Investigation of two Bioinspired Reaction Mechanisms for the Optimization of Eco Composites-Nano Catalysts Generated from Hyperbranched Polymer Matrices" manuscript submitted to reactive & functional polymers.

8.
J Hazard Mater ; 434: 128900, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452981

RESUMO

The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an eco-friendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes non-biodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable synthetic polyesters, such as polycaprolactone, polyhydroxy butyrate, polybutylene succinate and polylactic acid. The mass fraction crystallinity of the aliphatic polymers tested ranged from 11% to 64% highlighting the potential of the enzyme to hydrolyze highly crystalline plastics. MoPE was able to degrade different types of amorphous and semi-crystalline PET, releasing water-soluble monomers and showed synergy with a feruloyl esterase of the tannase family for the release of terephthalic acid. Based on the above, MoPE was characterized as a versatile psychrophilic polyesterase demonstrating a broad-range plastics degradation potential.


Assuntos
Moraxella , Polietilenotereftalatos , Bactérias/metabolismo , Biodegradação Ambiental , Humanos , Moraxella/metabolismo , Plásticos/metabolismo , Polietilenotereftalatos/metabolismo , Polímeros
9.
Materials (Basel) ; 14(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640292

RESUMO

Polyamide microcapsules have gathered significant research interest during the past years due to their good barrier properties; however, the potential of their application is limited due to the fragility of the polymeric membrane. Fully aliphatic polyamide microcapsules (PA MCs) were herein prepared from ethylene diamine and sebacoyl chloride via interfacial polymerization, and the effect of key encapsulation parameters, i.e., monomers ratio, core solvent, stirring rate and time during the polymerization step, were examined concerning attainable process yield and microcapsule properties (shell molecular weight and thermal properties, MC size and morphology). The process yield was found to be mainly influenced by the nature of the organic solvent, which was correlated to the diffusion potential of the diamine from the aqueous phase to the organic core through the polyamide membrane. Thus, spherical microcapsules with a size between 14 and 90 µm and a yield of 33% were prepared by using toluene as core solvent. Milder stirring during the polymerization step led to an improved microcapsule morphology; yet, the substantial improvement of mechanical properties remains a challenge.

10.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451162

RESUMO

The direct solid state polymerization (DSSP) of hexamethylene diammonium dodecanoate (PA 612 salt) was investigated for two different salt grades, fossil-based and bio-based. Aliphatic polyamide salts (such as PA 612 salt) are highly susceptible to solid melt transition (SMT) phenomena, which restrain the industrial application of DSSP. To that end, emphasis was given on reactor design, being the critical parameter influencing byproduct diffusion, amine loss and inherent DSSP kinetics. Experiments took place both at the microscale and the laboratory scale, in which two different reactors were tested in terms of bypassing SMT phenomena. The new reactor designed here proved quite successful in maintaining the solid state during the reaction. Scouting experiments were conducted in order to assess the effect of critical parameters and determine appropriate reaction conditions. Fossil-based PA 612 products proved to have a better end-group imbalance in comparison to bio-based ones, which is critical in terms of achieving high molecular weight. Finally, a real DSSP process was demonstrated, starting from PA 612 salt crystals and ending with PA 612 particles.

11.
Ultrason Sonochem ; 76: 105627, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34130189

RESUMO

New biotechnological processes using microorganisms and/or enzymes to convert carbonaceous resources, either biomass or depolymerized plastics into a broad range of different bioproducts are recognized for their high potential for reduced energy consumption and reduced GHG emissions. However, the hydrophobicity, high molecular weight, chemical and structural composition of most of them hinders their biodegradation. A solution to reduce the impact of non-biodegradable polymers spread in the environment would be to make them biodegradable. Different approaches are evaluated for enhancing their biodegradation. The aim of this work is to develop and optimize the ultrasonication (US) and UV photodegradation and their combination as well as dielectric barrier discharge (DBD) plasma as pre-treatment technologies, which change surface properties and enhance the biodegradation of plastic by surface oxidation and thus helping bacteria to dock on them. Polylactic acid (PLA) has been chosen as a model polymer to investigate its surface degradation by US, UV, and DBD plasma using surface characterization methods like X-ray Photoelectron Spectroscopy (XPS) and Confocal Laser Microscopy (CLSM), Atomic Force Microscopy (AFM) as well as FT-IR and drop contour analysis. Both US and UV affect the surface properties substantially by eliminating the oxygen content of the polymer but in a different way, while plasma oxidizes the surface.


Assuntos
Plásticos/química , Poliésteres/química , Reciclagem/economia , Propriedades de Superfície
12.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375182

RESUMO

In the current work, solid-state polymerization (SSP) was studied for the synthesis of poly(butylene terephthalate), PBT-based vitrimers. A two-step process was followed; the first step involved alcoholysis reactions and the incorporation of glycerol in the polymer chains. The second step comprised transesterification reactions in the solid state (SSP) in the presence of zinc(II) catalyst resulting in the formation of a dynamic crosslinked network with glycerol moieties serving as the crosslinkers. The optimum SSP conditions were found to be 3 h at 180 °C under N2 flow (0.5 L/min) to reach high vitrimer insolubility (up to 75%) and melt strength (2.1 times reduction in the melt flow rate) while increasing the crosslinker concentration (from 3.5 to 7 wt.%) improved further the properties. Glass transition temperature (Tg) was almost tripled in vitrimers compared to initial thermoplastic, reaching a maximum of 97 °C, whereas the melting point (Tm) was slightly decreased, due to loss of symmetry perfection under the influence of the crosslinks. Moreover, the effect of the dynamic crosslinked structure on PBT crystallization behavior was investigated in detail by studying the kinetics of non-isothermal crystallization. The calculated effective activation energy using the Kissinger model and the nucleating activity revealed that the higher crosslinker content impeded and slowed down vitrimers melt crystallization, also inducing an alteration in the crystallization mechanism towards sporadic heterogeneous growth.

13.
Polymers (Basel) ; 11(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510054

RESUMO

The effect of six halogen-free flame retardant (FR) formulations was investigated on the thermal stability of two low-density polyethylenes (LDPE) and one linear low-density polyethylene (LLDPE), by means of thermogravimetric analysis (TGA) under nitrogen and air atmosphere. The relative data were combined with flammability properties and the overall performance of the FRs was correlated with the type of branching in the polyethylene grades and to their processing behavior. The thermal degradation kinetics was further determined based on the Kissinger and Coats-Redfern methods. In terms of flammability, the addition of a triazine derivative and ammonium polyphosphate at a loading of 35 wt. %. was found to be the most efficient, leading to UL 94 V0 ranking in the case of the LDPE grade produced in an autoclave reactor.

14.
Bioengineering (Basel) ; 4(3)2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28952553

RESUMO

The aim of the present work was to study the encapsulation of Origanum onites L. essential oil (oregano EO) in ß-cyclodextrin (ß-CD) inclusion complexes (ICs), using the co-precipitation method. The formed ß-CD-oregano EO ICs were characterized by diverse methods, such as Dynamic Light Scattering (DLS), FT-IR spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM). UV-Vis spectroscopy was used for the determination of the inclusion efficacy and the study of the encapsulated oregano EO release profile. The interactions between host (ß-CD) and guest (oregano EO) in the formed ICs were proven by the FT-IR, DSC, TG and NMR analyses. The ICs, which derived from different batches, presented nanoscale size (531.8 ± 7.7 nm and 450.3 ± 11.5 nm, respectively), good size dispersion (0.308 ± 0.062 and 0.484 ± 0.029, respectively) and satisfactory stability in suspension (ζ-potential = -21.5 ± 1.2 mV and -30.7 ± 1.8 mV). Inclusion efficiency reached up to 26%, whereas the oregano EO release from the ICs followed a continuous delivery profile for up to 11 days, based on in vitro experiments. The formed ICs can find diverse applications, such as in the preparation of films for active packaging of food products, in personal care products for the improvement of their properties (e.g., antioxidant, antimicrobial, etc.), as well as in insect repellent products.

15.
Bioengineering (Basel) ; 4(3)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28952554

RESUMO

The aim of the current work was to encapsulate olive leaves extract in biodegradable poly(lactic acid) nanoparticles, characterize the nanoparticles and define the experimental parameters that affect the encapsulation procedure. Moreover, the loaded nanoparticles were incorporated in a cosmetic formulation and the stability of the formulation was studied for a three-month period of study. Poly(lactic acid) nanoparticles were prepared by the nanoprecipitation method. Characterization of the nanoparticles was performed using a variety of techniques: size, polydispersity index and ζ-potential were measured by Dynamic Light Scattering; morphology was studied using Scanning Electron Microscopy; thermal properties were investigated using Differential Scanning Calorimetry; whereas FT-IR spectroscopy provided a better insight on the encapsulation of the extract. Encapsulation Efficiency was determined indirectly, using UV-Vis spectroscopy. The loaded nanoparticles exhibited anionic ζ-potential, a mean particle size of 246.3 ± 5.3 nm (Pdi: 0.21 ± 0.01) and equal to 49.2%, while olive leaves extract release from the nanoparticles was found to present a burst effect at the first 2 hours. Furthermore, the stability studies of the loaded nanoparticles' cosmetic formulation showed increased stability compared to the pure extract, in respect to viscosity, pH, organoleptic characteristics, emulsions phases and grid.

16.
Bioengineering (Basel) ; 4(4)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28952560

RESUMO

The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

17.
Molecules ; 21(5)2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27128897

RESUMO

Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized in respect to their optical and thermal properties, and their average molecular weight was estimated via solution viscosity measurements and GPC. FT-IR and ¹H-NMR data suggest that phenol monomers are connected with ether or C-C bonds depending on the starting monomer, while the achieved molecular weight of polycatechol is found higher than the corresponding poly(gallic acid). On the other hand, under the same condition, pyrogallol was dimerized in a pure red crystalline compound and its structure was confirmed by ¹H-NMR as purpurogallin. The herein studied green synthesis of enzymatically synthesized phenol polymers or biological active compounds could be exploited as an alternative synthetic route targeting a variety of applications.


Assuntos
Lacase/metabolismo , Fenóis/química , Polímeros/síntese química , Ascomicetos/enzimologia , Biocatálise , Biomassa , Catecóis/química , Proteínas Fúngicas/metabolismo , Ácido Gálico/química , Fenômenos Ópticos , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Pirogalol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...